





聚羧酸减水剂被用作水泥混凝土的水泥分散剂,它在作用的时候有一个静电斥力的理论,下面我们就来看看这个理论吧。
水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。减水剂大多 属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散 双电层(Zel。a电位)的离子分布,在表面形成
扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,把水泥水化过程中形成的空间网架结构中的束缚水释放出来,使混凝土流动化。Zeta电位的值越大,减水效果就越好。随着水泥的进一步水化,电性被中和,静电斥力随之降低,范德华力的作用变成主导,对于萘系、系减水剂的混凝土,水 泥浆又开始凝聚,塌落度经时损失比较大,所以掺入这两类减水剂的混凝土所形成的分散是不稳定的。而对于、聚羧酸减水剂,由于其与水泥的吸附 模型不同,粒子间吸附层的作用力不同于前两类,其发挥分散作用的主导因素不是Zeta电位,而是一种稳定的分散。
以上就是关于聚羧酸减水剂的静电斥力理论的介绍了,这让我们更加了解了它的作用方法。
混凝土性能不仅仅是要更大的流动性,从结构质量和施工工艺要求这个角度考虑,混泥土外加剂,它还应该具有不分散、不离析以及不泌水性能,那么往往可能还需要加入增稠剂、引气剂,为了保证混凝土施工过程中工艺性能(比如流动性、可泵性等等)的稳定,确保施工顺利,可能还需要加入保坍剂、缓凝剂。从理论上来说,这些外加剂应该根据试验结果分别加入到混凝土中,因为不同的环境和施工工艺工装、原材料性能以及不同混凝土品种都决定了它们与单方混凝土中胶凝材料的比例各不相同,所以理想情况下,应该在搅拌站生产混凝土时分别加入。
但是,在代和第二代混凝土减水剂诞生时,混凝土的品种并不多,质量要求不高,施工工艺要求也不高,同时混凝土生产配制的设备并不完善,事实上从来没有实现外加剂分别加入混凝土这样的生产工艺。那么外加剂加入混凝土的过程事实上分为两个阶段,即由减水剂供应商与试验室经过试验,对混凝土的性能做一些必要的妥协考虑后,以减水剂为基础,套筒灌装浆料,根据需要按一定的比例将引气剂、增稠剂、缓凝剂、保坍剂等等预先混合后送搅拌站,这是阶段。搅拌站在此基础上,生产时按配合比要求把混合后的外加剂加入混凝土中,以获得满足一定性能要求的混凝土,这是第二阶段。人们把外加剂在一定试验和混凝土性能妥协的前提下预先按一定比例混合外加剂的方法和过程称为减水剂的复配。


加入常用改性组分后没有改性效果
目前对聚羧酸系减水剂科研方面的投入较少,大部分情况下,科研工作的目标只在于进一步提高其塑化减水效果方面,很难做到按照不同工程需要,通过分子结构设计合成出具有不同缓凝促凝效果、不引气或不同引气性、不同粘度的聚羧酸系减水剂系列产品。工程中水泥、掺合料、集料的多样性和不稳定性,外加剂生产供应者如何根据工程需要对聚羧酸系减水剂产品进行复配改性非常重要。目前减水剂的复配改性技术措施,减水剂,基本上都建立在对木质素磺酸盐系、萘系减水剂等传统减水剂改性措施的基础上的。试验证明,过去的改性技术措施不一定适合于聚羧酸系减水剂。
如对萘系减水剂进行改性的缓凝成分中,柠檬酸钠就不适合聚羧酸系减水剂,它不仅起不到缓凝作用,反而有可能促凝,且柠檬酸钠溶液和聚羧酸系减水剂的互溶性也很差。再者,许多品种的消泡剂、引气剂和增稠剂也不适合于聚羧酸系减水剂。通过上面的试验及分析,我们不难看出,因为聚羧酸系减水剂分子结构的特殊性,就现阶段的科研深度和工程应用经验的积累来说,通过其它化学组分对聚羧酸系减水剂进行改性的手段不多,聚羧酸减水剂,而且由于过去针对其它品种减水剂改性所建立起的理论和标准规范,对于聚羧酸系减水剂来说,可能需要更深层次的探索研究进行修正和补充。


混泥土外加剂-减水剂-芜湖弘马减水剂作用由芜湖弘马新材料有限公司提供。行路致远,砥砺前行。芜湖弘马新材料有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为特种建材具有竞争力的企业,与您一起飞跃,共同成功!