




风轮
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。风轮风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)
由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。叶片团有绷率计算上面讨论了叶片的激振力频率和叶片振动的***振型。为保持风轮始终对准风向以获得大的功率,还需在风轮的后面装一个类似风向标的尾舵。
叶片是叶轮机械的关键零部件,其工作环境恶劣,同时受高离心力、稳定气流力和交变气流激振力的作用,是故障多发件。叶片失效原因主要有机械损伤、高温损伤、高温暴露、蠕变失效、疲劳失效和腐蚀。该工艺与新整体叶盘工艺稍有不同,因为夹紧系统的元件排列在一个圆圈上,同时夹持所有叶片。其中疲劳失效是***重要的一个原因,它往往导致叶片断裂。研究叶片的减振方法有较大的工程意义。目前已有一些较成熟的减振技术,如干摩擦阻尼和蜂窝密封减振,前者通过特殊的结构设计达到减振的目的,后者则能加剧气流扰动,提高气流的能量耗散,减小气流激振。这些方法虽有明显的减振作用,但效果有限,且其结构固定,无法实现参数的调整。另外,有学者研究应用反旋流措施来提高转子稳定性,通过向密封间隙喷入逆向气流来减小密封间隙内的旋流。反旋流只有在合适的流速和流量下才能起到抑振的作用,否则就会导致振动失稳,且反旋流结构复杂,设计时计算困难,因此其工程应用并不多。本文研究的吸气方法从新的角度来改善叶顶间隙的气流特性,较反旋流技术有较大的优势。
振动的叶片对刀具切削刃施加了巨大的应变,造成裂纹,并且随机械和热应力而增加。制造整体叶盘所必需的组件成本在3.3万~8万美元之间,而且刀具因磨损和裂纹需不断更换。通常,在切削仅4米的材料就需要换刀。用于水质监测的浊度、悬浮物、叶绿素、污染物等环境参数在线检测仪。夹紧系统的初始实验表明刀具使用时间可以增加2~3倍。夹紧系统终结叶片振动削减了制造成本,大约每个整体叶盘5500美元。在修理中,叶片不能从材料中一件一件铣削出来,因为所有叶片都已经在那里。因此,如果它们的刃出现了磨损,制造商使用激光金属沉积重新熔覆材料,之后铣削成想要的外形。工人可以尝试使用夹紧器或橡胶将叶片夹持到位,但是不太可能***地再调准好它们。因此,工件之后必须重新测量,而且十分费时,夹紧系统就可以起到帮助。夹紧系统将叶片夹持在一个固***置,可以解决这个挑战。叶片几秒种就被固定在位置上,能够立即进行加工。该工艺与新整体叶盘工艺稍有不同,因为夹紧系统的元件排列在一个圆圈上,同时夹持所有叶片。它不会改变整体叶盘的几何外形,哪怕一微米也不会。