




在线在机测量技术成为大批量生产时保证加工质量的重要手段。计量型仪器进入生产现场、融入生产线,监控生产过程。仪器本身的可靠性、有效率、高精度以及质量统计功能、故障诊断功能进一步提高,满足了在线测量的要求。高精度数字化传感器的测量精度已实现从微米级向纳米级的提升;数字化测量仪器与机床集成进入生产现场,组成数字化加工系统:数控集成误差、工件毛坯安装误差及其环境误差的软件补偿技术得到进一步推广应用;非接触式扫描、视频测量技术和仪器备受重视;测量信息的无线传输和网络远程服务,进一步将被动型质量检测转换为主动型质量控制。美国Brownamp;Sharp公司的Br***o-NT 测量机可在汽车生产线上对车身尺寸实施在线测量并充分满足汽车生产线对测量节拍、测量精度和测量可靠性的要求;德国Kapp公司磨齿机的机载齿轮测量装置将测量系统和机床集成一体,可在工件试磨后马上进行在机检测,测量信息处理后能反馈至机床,及时修正加工参数。即使它们没有运动,这种装置也不会完全静止,而是以高频振动,在室温下随着分子的运动而推挤。特别有利于大型、重型齿轮和大批量齿轮的成形磨削加工。
多轴联动数控系统 的精度主要从单个伺服 轴的运动控制精度和联 动轴耦合轮廓精度 2 方 面来评价。外泌体,“液体活检”中的一个重要靶标,是细胞分泌的一种纳米级膜泡,其包含很多***细胞来源的核酸和蛋白质的信息。对于单个伺服轴的运动 控制,当要求的运动精度达到纳米级 时,传统的超精密机床传动方式在 低速、微动状态下表现出强非线性特 性,常规的运动控制策略已经很难保 证伺服系统实现理想的纳米级随动 精度。
此外,多轴联动系统的轮廓误差 由各伺服轴的运动误差耦合得到, 耦 合误差的建模及各轴相应的补偿控制量的计算都需要大量的齐次坐标 变换运算,这为实际的多轴联动耦合 控制器的设计带来了很大的不便。 智能控制理论与方法将可能为此问 题提供理想的解决方法。此外,要实 现多轴联动纳米级轮廓控制精度, 还 有一个不可忽视的问题,即联动轴的 同步问题。同步精度的高低直接影 响到系统的轮廓跟踪精度。美国BrownSharp公司的Br***o-NT测量机可在汽车生产线上对车身尺寸实施在线测量并充分满足汽车生产线对测量节拍、测量精度和测量可靠性的要求。严格意 义上的多轴伺服系统同步涉及到复 杂的数控和伺服系统接口规范的制 定。目前,在可以实现亚微米级加工 的高ji多轴联动超精密数控机床研 制方面,我国尚未取得突破性进展。 至于可实现大型复杂曲面,特别是自 由曲面的纳米级超精密加工的五轴 联动机床,至今仍是一个世界上尚未 解决的难题。
光电所在纳米级高精度测量系统方法研究中取得新进展
公司在2015年成为科技型中小企业,并设立了院士工作站,目前主要开发和经营以下3类产品和服务:旋转机械状态监测和健康管理、光电视觉及环保检测、高精度几何量检测。相关技术打破国外垄断,技术水平达到国外同类产品的***水平。
美国***标准与技术研究院(NIST)的科学家们开发了一种新的装置,可以测量超微粒子的运动,这些超微粒子的运动距离小得不可想象,比氢原子的直径还小,或者说比一个人的头发丝的百万分之一还小。在仪器研发方面,为拓展仪器性能,还将结合单分子荧光技术和高精度激光光镊,有望提升蛋白质科学领域的仪器自主研发能力。这种手持设备可以以***的精度探测微小零部件的原子级运动,而且,研究人员还找到了这种高灵敏度测量工具的量产方法。
测量大型物体的小运动是比较容易的,但是当移动部件的尺寸为纳米级时,难度就会加大。精准测量微观物体的微小位移的能力,可用于检测微量的***生物或化学***,完善微型机器人的运动,精准部署气囊,以及检测通过薄膜传播的极弱声波。