




自耦调压器过热的分析与处理
接线完毕进行试验,开关K合上,将自耦调压器升压,同时用钳形电流表监测调压器一次电流,发现调压器升压不到40V,一次电流便达到10A以上,以致调压器严重过热,无法进行正常试验。
分析与处理:调压器升压到40V时,可控制硅不导通,电压调节器直流回路不工作,调压器负载只有三相可控硅交流回路,一次电流过大,说明可控硅交流回路作为调压器的负载存在问题,分析判断很可能是三只二极管公共侧有接地,整流桥形成零式整流,使凋压器负载***,导致一次电流增大。热风干燥法,这种方式是将变压器放在干燥室中,通入热风进行干燥。用数字万用表检查回路,发现接至中控室的电压表和电流表回路有接地,使整流桥的负端接地,将接至中控室的表线拆除(即拆除端子XT:77和XT:78接线)。将调压器升压,一次电流***正常。
结论:整流桥中二极管公共侧接地,形成零式整流,使调压器二次负载***,导致一次电流增大,接地消除,回路***正常。
自耦变压器的原理及作用
自耦变压器是根据电磁感应现象中的自感现象制成的,它主要作用调节电压高低。
自感电动势是由于通过线圈本身的电l产生变化,使得穿过线圈的磁通发生变化而引起线圈两端产生的电动势。由于煤油蒸气热能大(煤油气化热为306×103j/kg),故使变压器器身干燥加热更彻底,更均匀,效率很高,并且对绝缘材料的损伤度也很小。因为感应电动势的高低与线圈的匝数成正比例,所以整个线圈中的局部绕组产生的电动势一定低于全部绕组产生的电动势。如果把局部绕组和全部绕组分别作为初级和次级,就构成了自耦变压器。同样,改变两部分绕组的匝数比也就改变了变压比。
自耦变压器结构简单,成本低。制成的自耦调压器、自耦j压补偿器等被广泛使用。但是由于自耦变压器的初、次级在电路上没有实现隔离,安全性能不高。所以在要求使用安全电压的场所,被禁止使用自耦变压器。
接地变压器的原理、特点和容量选择
接地变压器的接线原理
当主变压器配电电压侧为三角形接线或为星型接线而中性点不能引出时,必须用一个Z型接线的接地变压器人为地制造一个中性点,中性点接地电阻接入接地变地中性点,如附图所示:
Z型接地变压器地特点如下:
将三相铁心的每个芯柱上的绕组平均分为两段,两段绕组极性相反,三相绕组按Z形连接法接成星型接线。
Z型接地变压器的电磁特性是:
对正序、负序电流呈现高阻抗(相当于激磁阻抗),绕组中只流过很小的激磁电流;由于每个铁心柱上两段绕组绕向相反,同芯柱上两绕组流过相等的零序电流时,两绕组产生的磁通互相抵消,所以对零序电流呈现低阻抗(相当于漏抗),零序电流在绕组上的压降很小。有载调压装置往往连接在接地的中性点上,这样调压装置的电压等级可以比在线端调压时低。
接地变压器的容量选择
接地变容量的选择依据IEEE-C62.92.3标准,该标准规定接地变压器10秒过载系数为额定容量的10.5倍,因此可首先计算出10秒情况下接地变的容量,然后按10秒允许过载倍数折算为连续运行的额定容量。