




常规的或者是大家可以想象到的微孔加工的工艺有:冲压加工,冲压加工主要是针对孔径在1.0mm以上,材料厚度在0.5mm以下的产品,并且主要针对孔数比较少的工件,因为密集型的工件冲压模具是无法完成的。数控冲,数控冲是近几年比较流行的工艺,数控冲具有、成本低的优势,数控冲是需要更换相应的冲头即可操作,不需要模具。数控冲主要针对的是大孔径和低密度的工件,对于0.5mm以下的孔径工件数控冲基本就没有任何优势了。
微孔加工的辅助工艺有什么?
在工件的正面施加一个正向压力(例如吹气法),或是在工件的反面装一个低压仓,可有助于打孔过程中清除掉汽化材料并增加液相的排出。在脉冲结束以后,减弱熔化物不受控制地重新分布而造成对孔的尺寸及形状的影响,既改善了被加工孔的表面质量(如可使在孔的内壁上会由熔化金属产生的一层“再铸层”的厚度有效地的减少),并且可以防止金属蒸气凝聚在透镜上。
不锈钢微孔加工的原理为:液体在一定的压力下流入微孔内,固体杂质被微孔内的过滤杂质滞留,过滤后的液体由出口流出。当过滤到一定阶段时,因杂质的堆积,进出口压差增大,滤芯需求进行反冲洗,这时将反冲洗阀门翻开,液压由反冲洗进水口自下而下流入冲洗,微孔***过滤功能。滤芯可改换元件,当微孔运转到一定时期后,将滤芯拆下,改换新的滤芯,以确保在过滤的精度和效率。
微小孔的加工一直是机械制造中的一个难点,围绕这个问题研究人员进行了大量研究。目前可用于加工微小孔的方法有:机械加工、激光加工、电火花加工、超声加工、电子束加工及复合加工等[1]。有关各种方法可加工的微小孔直径范围已有较多的报道,而对于加工所得微小孔侧壁粗糙度的研究却比较少。随着科学技术的发展和尖i端产品的日益精密化、集成化和微型化,微小孔越来越广泛地应用于汽车、电子、光纤通讯和流体控制等领域,这些应用对微小孔的加工也提出了更高的要求。例如,熔融沉积快速原型机所用喷头是一个高i精度微小孔,不仅要求孔径大小准确,而且要求孔壁光滑,有利于熔体挤出以及挤出时微小孔流体阻力的准确控制。本文通过对可用于快速原型机喷头的微小孔侧壁粗糙度进行测量,进一步研究该微小孔粗糙度对熔融沉积快速原型机所用喷头工作质量的影响。本研究结果还可对纺丝、喷墨打印机等其他行业中类似微小孔表面粗糙度的研究提供参考。