




焊接机器人是工业自动化行业内的领域,该行业是充分竞争的行业,在国际社会上,美国、日本以及欧洲公司在焊接机器人市场占据主导地位。我国各类焊接机器人设备供应商虽然取得了一定的进步,但与国际上具备先进水平和产业规模的大型企业相比,还存在较大差距。目前,我国机器人市场上,机器人自动化焊接,其中完全国产机器人行业集中度不到40%,其余皆为从日本、美国、瑞典、德国、意大利等20多个国家引进。究其原因,很大程度在于自主品牌不够。
然而,近年来我国部分焊接机器人产品已打破国外垄断,产品进入重要生产环节。比如汽车用焊接机器人领域,特别是美的集团收购了德国的库卡公司,使得国内焊接机器人设备供应商已开始间接进入汽车整车生产领域,并占有一定的市场份额。来自瑞典、德国以及日本等国的世界机器人企业已受到来自中国本土的焊接机器人企业的挑战。
根据PAISI公布的数据显示,2018年中国中高焊接机器人市场中,日本和欧美国家占据优势,其中日本占比达到48%,欧美占比达到33%,自动化焊接设备,而中国占比只有12%。
奥氏体不锈钢及其焊接特点
奥氏体不锈钢是应用广泛的不锈钢,以高Cr-Ni型普遍。目前奥氏体不锈钢大致可分为Cr18-Ni8型、Cr25-Ni20型、Cr25-Ni35型。奥氏体不锈钢有以下焊接特点:
① 焊接热裂纹,奥氏体不锈钢由于其热传导率小,线膨胀系数大,因此在焊接过程中,焊接接头部位的高温停留时间较长,焊缝易形成粗大的柱状晶组织,在凝固结晶过程中,若硫、磷、锡、锑、铌等杂质元素含量较高,激光焊接自动化,就会在晶间形成低熔点共晶,在焊接接头承受较高的拉应力时,就易在焊缝中形成凝固裂纹,在热影响区形成液化裂纹,这都属于焊接热裂纹。
防止热裂纹有效的途径是降低钢及焊材中易产生低熔点共晶的杂质元素和使铬镍奥氏体不锈钢中含有4% ~ 12%的铁素体组织。
② 晶间腐蚀 根据贫铬理论,在晶间上析出碳化铬,造成晶界贫铬是产生晶间腐蚀的主要原因。为此,选择超低碳焊材或含有铌、钛等稳定化元素的焊材是防止晶间腐蚀的主要措施。
③ 应力腐蚀开裂 应力腐蚀开裂通常表现为脆性破坏,且发生破坏的过程时间短,因此危害严重。造成奥氏体不锈钢应力腐蚀开裂的主要原因是焊接残余应力。焊接接头的组织变化或应力集中的存在,局部腐蚀介质浓缩也是影响应力腐蚀开裂的原因。
双相不锈钢的焊接要点
① 焊接热过程的控制 焊接线能量、层间温度、预热及材料厚度等都会影响焊接时的冷却速度,从而影响到焊缝和热影响区的组织和性能。冷却速度太快和太慢都会影响到双相钢焊接接头的韧性和耐腐蚀性能。冷却速度太快时会引起过多的α相含量以及Cr2N的析出增加。过慢的冷却速度会引起晶粒严重粗大,甚至有可能析出一些脆性的金属间化合物,如σ相。表1列出了一些推荐的焊接线能量和层间温度的范围。在选择线能量时还应考虑到具体的材料厚度,表中线能量的上限适合于厚板,下限适合于薄板。在焊接合金含量高的ω(Cr)为25 % 的双相钢和超级不锈钢时,为获得较佳的焊缝金属性能,建议高层间温度控制在100℃。当焊后要求热处理时可以不限制层间温度。
② 焊后热处理 双相不锈钢焊后不进行热处理,但当焊态下α相含量超过了要求或析出了有害相,如σ相时,焊接自动化,可采用焊后热处理来改善。所用的热处理方法是水淬。热处理时加热应尽可能快,在热处理温度下的保温时间为5 ~ 30min,应该足以恢复相的平衡。在热处理时金属的氧化非常严重,应考虑采用惰性气体保护。对于ω(Cr)为22 % 的双相钢应在1050℃ ~ 1100℃温度下进行热处理,而ω(Cr)为25 % 的双相钢和超级双相钢要求在1070℃ ~ 1120℃温度下进行热处理。
焊接自动化-芜湖劲松焊接设备-激光焊接自动化由芜湖劲松焊接机电销售有限公司提供。芜湖劲松焊接机电销售有限公司()是从事“焊接设备,切割设备,焊切专机,焊接材料,工业机器人”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供高质量的产品和服务。欢迎来电咨询!联系人:周经理。