应急抢修中氮气置换SPS模型
根据SPS建模流程[9-11],单端注氮SPS模型如图
3 所示,整个管段设置阀室 2 座。由于在事故抢修工
况下上下游管道均通过阀室截断,故在模拟氮气置换
过程时,上下游阀室通过截断阀(B_JDF1、B_JDF2)
截断气源进出。注氮阀室通过注氮管线模拟注入氮
气,通过注氮口(E_N2_1)进行流量和压力控制。放空
阀室通过放空管线模拟放空,放空口(E_FK)采用大
气压力和声速限制控制放空流量。通过控制模拟节流
阀(MOOE_1)的开度来模拟破损口当量直径,管道氮气置换,末端(E_
P5)采用大气压力和声速限制控制泄漏流量。
双端注氮SPS模型如图 4 所示。氮气置换过程中
注氮阀室上下游管线均通过截断阀(B_JDF1、B_JDF2)
截断。两端阀室均通过注氮管线模拟注氮,通过注氮
口(E_N2_1、E_N2_2)进行流量和压力控制。破损口
通过控制模拟节流阀(MOOE_1)的开度来模拟破损口
当量直径,末端(E_P5)采用大气压力和声速限制控制
泄漏流量。
管道氮气置换
2.3 单/双端注氮工艺优化“转换相图”
通过分别研究破损口当量直径和破损口位置对总
注氮时间的影响可知,单/双端注氮方式的选择存在临
界破损口当量直径和破损口位置。以临界点对应的破
损口当量直径与管径的比值为纵坐标,以破损口离注
氮阀室的距离与两端阀室距离的比值为横坐标,可得
如图 8 所示的单/双端注氮工艺“转换相图”。由“转
换相图”可知,管道氮气置换,存在一条临界“转变”线,破损口特
征位于“转变”线以上区域(A区域)时,选择双端注
氮工艺;损口特征位于“转变”线以下区域(B区域)
时,则选择单端注氮工艺。在B区域内,还存在一
个C区域,破损口当量直径与管径比(破损口孔径比)
小于 9.9%的区域,在该区域内,无论破损口位于何
处,破损口综合特征均处于“转变线”以下,即破损
口孔径比小于 9.9%时,需选择单端注氮工艺。在A区
域内,存在一个D区域,破损口孔径比大于 13.8%的
区域,长输管道氮气置换,在该区域内,无论破损口位于何处,破损口综
合特征均处于“转变线”以上,即破损口孔径比大于
13.8%需选择双端注氮工艺。
通过该“转变相图”,工程技术人员可根据破损口
综合特征(破损口距注氮阀室距离、破损口孔径比)查
找相应管道的经验相图选择注氮工艺,有助于工
程技术人员在管道事故应急抢修时快速优选氮气置换
方案,提高氮气置换环节的运行质量。
氮气干燥原理和干空气干燥原理相同 ,它们 大区别在于氮气的含湿量比干空气含湿量低得多 , 氮气带走管道内残留水的速度比干空气快得多。液 氮经汽化加热后 ,其中水分含量低于 1 ×10 - 6 ,相当 于 - 75 ℃时对应的水分含量 ;而为 - 40 ℃的干空气对应水分含量为 126. 8 ×10 - 6 (实际上 ,燃气管道氮气置换方案, 在现场施工过程中干空气的低于 - 40 ℃是较 难实现的 ,有的则直接用压缩空气来充当干空气) 。 干空气干燥系统主要由高压大排量移动式空压机、 风冷型空气冷却器、微热变压吸附式再生空气 干燥器、粉尘过滤器、便携式仪、清管器等设备 组成[5 - 6 ] 。设备多 ,噪声大 ,干空气流量相对较小 , 作业时间长。氮气干燥所需机具设备有 :液氮槽车、 车载空气汽化器、水浴式加热炉、发电机、便携式露 店仪、清管器等。与氮气置换设备相比 ,只需增加便 携式仪 ,具有设备少 ,噪声小 ,氮气流量大 ,作业 速度快的优点。采用液氮汽化氮气干燥工艺 ,管道 干燥与氮气置换一并进行 ,既可减少工期 ,又可降低 工程***。
管道氮气置换-念龙化工-燃气管道氮气置换方案由郑州念龙化工产品有限公司提供。“高纯气体生产,标准气体经营,混合气体生产”就选郑州念龙化工产品有限公司(),公司位于:郑州市二七区马寨镇东方路7号院内,多年来,念龙化工坚持为客户提供好的服务,联系人:张经理。欢迎广大新老客户来电,来函,亲临指导,洽谈业务。念龙化工期待成为您的长期合作伙伴!