





2. 机器人视觉:用于指引机器人在大范围内的操作和行动,如从料斗送出的杂乱工件堆中拣取工件并按一定的方位放在传输带或其他设备上(即料斗拣取问题)。至于小范围内的操作和行动,还需要借助于触觉传感技术。
此外还有:(1)自动光学检查(2)人脸侦测(3)无人驾驶汽车
机器视觉特点
1.摄像机的拍照速度自动与被测物的速度相匹配,拍摄到理想的图像;
2.零件的尺寸范围为2.4mm到12mm,厚度可以不同;
3.系统根据操作者选择不同尺寸的工件,调用相应视觉程序进行尺寸检测,并输出结果;
4.针对不同尺寸的零件,排序装置和输送装置可以调整料道的宽度,使零件在固定路径上运动并进行视觉检测
观点二:
在各种缺陷检测的应用中,打光是个难点。如果获得的图片让人看还要仔细斟酌才能给出结果,那么算法就太难做了。反之如果前期搞好打光,突出所要检测的特征,算法并不是困难的东西。
但是,注意这里有一个很严重的但是。我并不是说算法已经够好了,机器视觉和人类的差距还是非常巨大的!这里面差距就是智能。没错,智能相机距离智能两个字,还很远。主要体现在:对于非预期的缺陷的识别。
机器视觉检测仍然很有市场,因为它解决了人类的一个非常严重的问题:不稳定性。人工目检的作业员,无论你设计怎样的奖惩制度,都会发生比较高的漏检率。但是机器视觉检测设备没问题,只要是你在算法中写好的东西,每一次都会认真执行。对于工厂的质量控制来说,我们更愿意舍弃人工目检所带来的智慧的好处,而选择虽然比较傻但是一丝不苟工作的机器视觉。
