





产品的小型化趋势让这个行业能够在更小的空间内包装更多的部件,这意味着机器视觉产品变得更小,这样他们就能够在厂区所提供的有限空间内应用。机器选型编辑在机器视觉系统中,获得一张高质量的可处理的图像是至关重要。例如在工业配件上LED 已经成为主导光源,它的小尺寸使成像参数的测定变得容易,他们的耐用性和稳定性非常适用于工厂设备。
集成产品增多智能相机的发展预示了集成产品增多的趋势,智能相机是在一个单独的盒内集成了处理器、镜头、光源、输入/输出装置及以太网,电话和 PDA 推动了更快、更便宜的精简指令集计算机(RISC)的发展,这使智能相机和嵌入式处理器的出现成为可能。一个机器视觉项目之所以失败,大部分情况是由于图像质量不好,特征不明显引起的。同样,现场可编程门列阵(FPGA)技术的进步为智能相机增添了计算功能,并为PC 机嵌入了处理器和桢,智能相机结合处理大多数计算任务的FPGA,DSP和微处理器则会更具有智能性 。
机器视觉的应用正越来越多地代替人去完成许多工作,这无疑在很大程度上提高了生产自动化水平和检测系统的智能水平。Blob检测根据上面得到的处理图像,根据需求,在纯色背景下检测杂质,并且要计算出的面积,以确定是否在检测范围之内。机器视觉与计算机视觉的不同机器视觉不同于计算机视觉,它涉及图像处理、人工智能和模式识别机器视觉是专注于集合机械,光学,电子,软件系统,检查自然物体和材料,人工缺陷和生产制造过程的工程,它是为了检测缺陷和提高质量,操作效率,并保障产品和过程安全。它也用于控制机器。机器视觉是将计算机视觉应用于工业自动化。
