




人脸识别门禁的特点有:
首先不用制作门禁卡,节省费用的同时也避免了用卡人的携带问题。 其次人脸识别更加安全可靠,不用担心卡片丢失被人使用的问题。 人脸识别也有方便快捷,易于管理等有点。
人脸识别门禁的精准度和人脸识别技术***与否、人脸门禁应用场景、当天的环境(比如光线)、人脸门禁硬件设备都有关系,重中之重技术问题。
相比传统的门卡,人脸识别门禁系统更加的安全,因为门卡在配钥匙的店铺可随意复刻,而门卡如此容易被复刻,让不少市民感到担忧,这样等于小区门禁系统如同虚设。而人脸识别门禁系统利用的是人脸的唯1匹配性,具有先天的安全优势。
人脸识别的发展历史
第壹阶段(1950s—1980s)初级阶段
人脸识别被当作一个一般性的模式识别问题,主流技术基于人脸的几何结构特征。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工***网络也一度曾经被研究人员用于人脸识别问题中。较早从事 AFR 研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。
第二阶段(1990s)高潮阶段
这一阶段尽管时间相对短暂,但人脸识别却发展迅速,不但出现了很多经典的方法,还出现了若干商业化运作的人脸识别系统,比如为的 Visionics(现为 Identix)的 FaceIt 系统。 从技术方案上看, 2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。
第三阶段(1990s末~现在)
人脸识别的研究不断深入,研究者开始关注面向真实条件的人脸识别问题,主要包括以下四个方面的研究:
1)提出不同的人脸空间模型,包括以线性判别分析为代表的线性建模方法,以Kernel方法为代表的非线性建模方法和基于3D信息的3D人脸识别方法。
2)深入分析和研究影响人脸识别的因素,包括光照不变人脸识别、姿态不变人脸识别和表情不变人脸识别等。
3)利用新的特征表示,包括局部描述子(Gabor Face, LBP Face等)和深度学习方法。
4)利用新的数据源,例如基于视频的人脸识别和基于素描、近红外图像的人脸识别。
关于人脸识别的市场研究
1. ***人脸识别市场
前瞻根据人脸识别行业发展现状;到2016年,***生物识别市场规模在127.13亿美元左右,其中人脸识别规模约26.53亿美元,占比在20%左右。预计到2021年,***人脸识别市场预计将达到63.7亿美元,按预计期间的复合增长率达17.83%。
2. 中国人脸识别市场
前瞻根据人脸识别行业发展现状,估算我国人脸识别市场规模约占***市场的10%左右。2010-2016年,我国人脸识别市场规模逐年增长,年均复合增长率达27%。2016年,我国人脸识别行业市场规模约为17.25亿元,同比增长27.97%,增速较上年上升4.64个百分点。
影响人脸识别系统对人脸采集的主要因素有哪些?
1.图像大小:人脸图像过小会影响识别效果,人脸图像过大会影响识别速度。非***人脸识别摄像头常见规定的蕞小识别人脸像素为60*60或100*100以上。在规定的图像大小内,算法更容易提升准确率和召回率。图像大小反映在实际应用场景就是人脸离摄像头的距离。
2.图像分辨率:越低的图像分辨率越难识别。图像大小综合图像分辨率,直接影响摄像头识别距离。现4K摄像头看清人脸的远距离是10米,7K摄像头是20米。
3.光照环境:过曝或过暗的光照环境都会影响人脸识别效果。可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。
4.模糊程度:实际场景主要着力解决运动模糊,人脸相对于摄像头的移动经常会产生运动模糊。部分摄像头有抗模糊的功能,而在成本有限的情况下,考虑通过算法模型优化此问题。
5.遮挡程度:五官无遮挡、脸部边缘清晰的图像为蕞佳。而在实际场景中,很多人脸都会被帽子、眼镜、口罩等遮挡物遮挡,这部分数据需要根据算法要求决定是否留用训练。
6.采集角度:人脸相对于摄像头角度为正脸蕞佳。但实际场景中往往很难抓拍正脸。因此算法模型需训练包含左右侧人脸、上下侧人脸的数据。工业施工上摄像头安置的角度,需满足人脸与摄像头构成的角度在算法识别范围内的要求。